Toggle navigation
شرح واسئلة
الاقسام
تعليم حكومي
تكنولوجيا معلومات
صحة
اعمال
تقارير
تصميم
برمجة
تسويق
رسم هندسي
هندسة
تعليم عالي
تعليم
امن معلومات
تكنولوجيا
فيديو + صوتيات
مقالات
الرئيسية
ادخل شئ للبحث عنه
ما يسمعه الجنين في رحمك اشياء يجب ان تعرفيها
الاكواد الهندسية العالمية
مميزات عملة النيم NEM الرقمية و طريقة تداولها
لكل المبتدئين في الزواج تجميع وصفات عمل الجمبري بطريقة تسهل عليكى في المطبخ
السيرة الذاتية للعالم كارل سكيل مكتشف الأكسجين
نسبة الكوليسترول في الدم وعلاقتها بتقدم العمر عند الرجال
كل ما تريد معرفته عن إيلون ماسك أغنى رجل في العالم
افضل 10 سيارات فورد في تاريخها
اقرأ ايضا
بحث عن القيادة و الريادة
تعليم
التاريخ: 18/6/2019
بحث عن بلال بن رباح
تعليم
التاريخ: 20/5/2019
بحث عن الجناية على مادون النفس
تعليم
التاريخ: 28/5/2019
بحث عن المثلثات المتشابه
تعليم
التاريخ: 18/5/2019
بحث عن النجاح
تعليم
التاريخ: 20/5/2019
بحث عن التمائم
تعليم
التاريخ: 12/6/2019
بحث عن مطياف الكتلة
تعليم
التاريخ: 10/6/2019
الرائحة الطبيعية وغير الطبيعية لدم الدورة الشهرية
الام والطفل
التاريخ: 9/9/2018
من هم العشرة المبشرين بالجنة ؟
اسلاميات
التاريخ: 14/12/2019
مواصفات واسعار جوال اتش تي سي وان HTC One SV LTE
تكنولوجيا
التاريخ: 06/5/2013
بحث عن المثلثات المتشابه
تعليم
بحوث للطلاب
18/5/2019
تشابه المثلثات هي إحدى الظواهر الرياضية ، و تحدث إذا كانت مقاييس الضلعين المقابلين للمثلثين متماثلين ، و إذا كانت قياسات الضلعين في مثلث واحد متماثلة مع الأضلاع المقابلة في مثلث آخر و كانت الزوايا المتضمنة متطابقة ، تكون المثلثات متشابهة .
تعريف المثلث
– المثلث هو شكل هندسي أساسي في الرياضيات ، ينتج عند رسم قطع مستقيمة (تسمى الأضلاع) تصل بين ثلاث نقاط ليست على استقامة واحدة (تمثل الرؤوس) ، أي أنه شكل مغلق مكون من ثلاثة أضلاع و ثلاث زوايا ، و للمثلث ستة عناصر : ثلاثة أضلاع و ثلاث زوايا ، و مجموع زوايا أي مثلث الداخلية تساوي مئة وثمانين درجة ، و في أي مثلث مجموع طولي أي ضلعين دائماً أكبر من طول الضلع الثالث .
نبذة عن المثلثات المتشابهة
– تكون المثلثات متشابهة إذا كان لها نفس الشكل ، و لكن ليس بالضرورة بنفس الحجم ، و يمكنك التفكير في الأمر على أنه “تكبير” أو جعله المثلث أكبر أو أصغر ، و لكن مع الحفاظ على شكله الأساسي ، في الشكل أدناه ، بينما تقوم بسحب أي قمة على مثلث PQR ، يتغير المثلث الآخر ليكون بنفس الشكل ، و لكن نصف الحجم . – و يمكننا أن نقول بأن المثلثين متشابهين في الحالات التالية : إذا كانا متطابقين ، و يتشابه المثلثان إذا كانت أطوال أضلاعهما المتناظرة متساوية ، و يتشابه المثلثان إذا كانت قياسات زواياهما المتناظرة متساوية .
خصائص المثلثات المتشابه
1- الزوايا المقابلة متطابقة (نفس المقياس) ، و في الشكل أدناه ، تكون الزاوية P = P ‘و Q = Q’ و R = R ‘.
2- الأطراف المقابلة كلها في نفس النسبة ، و لذلك ، فإن الأزواج الأخرى من الجانبين هي أيضا في هذه النسبة ، و العلاقات العامة مرتين P’R و RQ مرتين R’Q ، بشكل رسمي ، في مثلثين مماثلين PQR و P’Q’R ‘ .
الأجزاء المشتركة في المثلثات المتشابه
– يمكن أن يكون المثلثان متشابهان ، حتى لو كانا يتشاركان بعض العناصر ، و في بعض المثلثات يشبه المثلث الأكبر PQR مثيل STR الأصغر ، S و T هي النقاط الوسطى للعلاقات العامة و QR على التوالي ، و يتشاركون في قمة R وجزء من الجانبين PR و QR ، و تتشابه على أساس AAA ، لأن الزوايا المقابلة في كل مثلث هي نفسها .
نبذة عن المثلثات المتطابقة
– يحدث التطابق في أي مثلثين إذا تساوت أطوال أضلاعهما المتناظرة و أيضًا تساوت قياسات زواياهما المتناظرة ، و هناك حالات معينة نستطيع أن نعرف من خلالها إذا كان هناك تطابق و هي كالتالي : (ضلع ، ضلع ، ضلع) ، و يقصد بهذه الحالة أن المثلثين يتطابقان إذا كان لهما ثلاثة أضلاع متماثلة و متساوية في القياس ، (ضلع ، زاوية ، ضلع) يتطابق المثلثان إذا تساوى فيهما طول ضلعين و زاوية محصورة بينهما ، و يشترط أن تكون محصورة ، (زاوية، زاوية، ضلع) إذا تساوى طول ضلع و زاويتين في المثلث الأول ، مع طول ضلع و زاويتين متناظرتين في المثلث الثاني .
قوانين قياس المثلثات
مساحة المثلث
– مساحة أي مثلث تساوي حاصل ضرب طول نصف القاعدة في الارتفاع ، و يقصد بالارتفاع العمود الساقط من إحدى الزوايا إلى الضلع المقابل و الذي يطلق عليه القاعدة ، أي أنه يصنع زاوية قائمة مع القاعدة ، مساحة المثلث = 1/2القاعدة × الإرتفاع .
محيط المثلث
– محيط المثلث يساوي مجموع قياس أطوال الأضلاع الثلاثة ، بشرط تساوي وحدات القياس .
– محيط المثلث = طول الضلع الأول + طول الضلع الثاني = طول الضلع الثالث .
نظرية فيثاغورث
– نظرية فيثاغورث هي إحدى نظريات الرياضة المعروفة جداً ، و التي قام بوضعها العالم اليوناني الشهير فيتاغورس ، و تستخدم فقط في المثلث قائم الزاوية و تنص على أن مساحة المربع المنشأ على الوتر يساوي مساحة المربعين الواقعين على ضلعي القائمة ، و أيضاً نستطيع صياغتها كم يلي : مربع طول الوتر = مربع ضلع القائمة الأول + مربع ضلع القائمة الثاني ، فإذا كان المثلث أ ب ج مثلث قائم الزاوية في ب فإن العلاقة بين أطوال الأضلاع هي : (أج)^2 = (أب)^2 +(أج)^2 .
اقرأ ايضا
العلاجات الطبيعية لعدوى الخميرة المهبلية
الاكزيما العصبية الأعراض و الاسباب و العلاج
كيفية التعامل مع الاطفال المصابين بصعوبات التعلم
اصدار جديد من اللعبة الشيقة Call Of Duty باسم Black Ops Cold War
ماسك السكر والجلسرين للبشرة المسمرة
كيفية شحن بطارية سيارتك من سيارة اخرى
معلومات عن ثعبان الذرة
شركة ايلون ماسك Space X تعتزم الاكتتاب العام لستارلينك الأعمال
صور و اسعار فيراري 360 – 2013 – Ferrari 360
فوائد وأضرار بسكويت دايجستيف
X
2024 skuilder.com™.